Copied to
clipboard

G = A4xC22xC6order 288 = 25·32

Direct product of C22xC6 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4xC22xC6, C25:2C32, C23:3C62, C24:4(C3xC6), (C23xC6):7C6, (C24xC6):1C3, C22:(C2xC62), (C22xC6):7(C2xC6), (C2xC6):3(C22xC6), SmallGroup(288,1041)

Series: Derived Chief Lower central Upper central

C1C22 — A4xC22xC6
C1C22C2xC6C3xA4C6xA4A4xC2xC6 — A4xC22xC6
C22 — A4xC22xC6
C1C22xC6

Generators and relations for A4xC22xC6
 G = < a,b,c,d,e,f | a2=b2=c6=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 1068 in 420 conjugacy classes, 128 normal (10 characteristic)
C1, C2, C2, C3, C3, C22, C22, C22, C6, C6, C23, C23, C23, C32, A4, C2xC6, C2xC6, C2xC6, C24, C24, C3xC6, C2xA4, C22xC6, C22xC6, C22xC6, C25, C3xA4, C62, C22xA4, C23xC6, C23xC6, C6xA4, C2xC62, C23xA4, C24xC6, A4xC2xC6, A4xC22xC6
Quotients: C1, C2, C3, C22, C6, C23, C32, A4, C2xC6, C3xC6, C2xA4, C22xC6, C3xA4, C62, C22xA4, C6xA4, C2xC62, C23xA4, A4xC2xC6, A4xC22xC6

Smallest permutation representation of A4xC22xC6
On 72 points
Generators in S72
(1 51)(2 52)(3 53)(4 54)(5 49)(6 50)(7 20)(8 21)(9 22)(10 23)(11 24)(12 19)(13 47)(14 48)(15 43)(16 44)(17 45)(18 46)(25 69)(26 70)(27 71)(28 72)(29 67)(30 68)(31 65)(32 66)(33 61)(34 62)(35 63)(36 64)(37 60)(38 55)(39 56)(40 57)(41 58)(42 59)
(1 18)(2 13)(3 14)(4 15)(5 16)(6 17)(7 40)(8 41)(9 42)(10 37)(11 38)(12 39)(19 56)(20 57)(21 58)(22 59)(23 60)(24 55)(25 36)(26 31)(27 32)(28 33)(29 34)(30 35)(43 54)(44 49)(45 50)(46 51)(47 52)(48 53)(61 72)(62 67)(63 68)(64 69)(65 70)(66 71)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)
(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(19 59)(20 60)(21 55)(22 56)(23 57)(24 58)(25 33)(26 34)(27 35)(28 36)(29 31)(30 32)(61 69)(62 70)(63 71)(64 72)(65 67)(66 68)
(1 15)(2 16)(3 17)(4 18)(5 13)(6 14)(25 33)(26 34)(27 35)(28 36)(29 31)(30 32)(43 51)(44 52)(45 53)(46 54)(47 49)(48 50)(61 69)(62 70)(63 71)(64 72)(65 67)(66 68)
(1 11 27)(2 12 28)(3 7 29)(4 8 30)(5 9 25)(6 10 26)(13 39 33)(14 40 34)(15 41 35)(16 42 36)(17 37 31)(18 38 32)(19 72 52)(20 67 53)(21 68 54)(22 69 49)(23 70 50)(24 71 51)(43 58 63)(44 59 64)(45 60 65)(46 55 66)(47 56 61)(48 57 62)

G:=sub<Sym(72)| (1,51)(2,52)(3,53)(4,54)(5,49)(6,50)(7,20)(8,21)(9,22)(10,23)(11,24)(12,19)(13,47)(14,48)(15,43)(16,44)(17,45)(18,46)(25,69)(26,70)(27,71)(28,72)(29,67)(30,68)(31,65)(32,66)(33,61)(34,62)(35,63)(36,64)(37,60)(38,55)(39,56)(40,57)(41,58)(42,59), (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,40)(8,41)(9,42)(10,37)(11,38)(12,39)(19,56)(20,57)(21,58)(22,59)(23,60)(24,55)(25,36)(26,31)(27,32)(28,33)(29,34)(30,35)(43,54)(44,49)(45,50)(46,51)(47,52)(48,53)(61,72)(62,67)(63,68)(64,69)(65,70)(66,71), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(19,59)(20,60)(21,55)(22,56)(23,57)(24,58)(25,33)(26,34)(27,35)(28,36)(29,31)(30,32)(61,69)(62,70)(63,71)(64,72)(65,67)(66,68), (1,15)(2,16)(3,17)(4,18)(5,13)(6,14)(25,33)(26,34)(27,35)(28,36)(29,31)(30,32)(43,51)(44,52)(45,53)(46,54)(47,49)(48,50)(61,69)(62,70)(63,71)(64,72)(65,67)(66,68), (1,11,27)(2,12,28)(3,7,29)(4,8,30)(5,9,25)(6,10,26)(13,39,33)(14,40,34)(15,41,35)(16,42,36)(17,37,31)(18,38,32)(19,72,52)(20,67,53)(21,68,54)(22,69,49)(23,70,50)(24,71,51)(43,58,63)(44,59,64)(45,60,65)(46,55,66)(47,56,61)(48,57,62)>;

G:=Group( (1,51)(2,52)(3,53)(4,54)(5,49)(6,50)(7,20)(8,21)(9,22)(10,23)(11,24)(12,19)(13,47)(14,48)(15,43)(16,44)(17,45)(18,46)(25,69)(26,70)(27,71)(28,72)(29,67)(30,68)(31,65)(32,66)(33,61)(34,62)(35,63)(36,64)(37,60)(38,55)(39,56)(40,57)(41,58)(42,59), (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,40)(8,41)(9,42)(10,37)(11,38)(12,39)(19,56)(20,57)(21,58)(22,59)(23,60)(24,55)(25,36)(26,31)(27,32)(28,33)(29,34)(30,35)(43,54)(44,49)(45,50)(46,51)(47,52)(48,53)(61,72)(62,67)(63,68)(64,69)(65,70)(66,71), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(19,59)(20,60)(21,55)(22,56)(23,57)(24,58)(25,33)(26,34)(27,35)(28,36)(29,31)(30,32)(61,69)(62,70)(63,71)(64,72)(65,67)(66,68), (1,15)(2,16)(3,17)(4,18)(5,13)(6,14)(25,33)(26,34)(27,35)(28,36)(29,31)(30,32)(43,51)(44,52)(45,53)(46,54)(47,49)(48,50)(61,69)(62,70)(63,71)(64,72)(65,67)(66,68), (1,11,27)(2,12,28)(3,7,29)(4,8,30)(5,9,25)(6,10,26)(13,39,33)(14,40,34)(15,41,35)(16,42,36)(17,37,31)(18,38,32)(19,72,52)(20,67,53)(21,68,54)(22,69,49)(23,70,50)(24,71,51)(43,58,63)(44,59,64)(45,60,65)(46,55,66)(47,56,61)(48,57,62) );

G=PermutationGroup([[(1,51),(2,52),(3,53),(4,54),(5,49),(6,50),(7,20),(8,21),(9,22),(10,23),(11,24),(12,19),(13,47),(14,48),(15,43),(16,44),(17,45),(18,46),(25,69),(26,70),(27,71),(28,72),(29,67),(30,68),(31,65),(32,66),(33,61),(34,62),(35,63),(36,64),(37,60),(38,55),(39,56),(40,57),(41,58),(42,59)], [(1,18),(2,13),(3,14),(4,15),(5,16),(6,17),(7,40),(8,41),(9,42),(10,37),(11,38),(12,39),(19,56),(20,57),(21,58),(22,59),(23,60),(24,55),(25,36),(26,31),(27,32),(28,33),(29,34),(30,35),(43,54),(44,49),(45,50),(46,51),(47,52),(48,53),(61,72),(62,67),(63,68),(64,69),(65,70),(66,71)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72)], [(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(19,59),(20,60),(21,55),(22,56),(23,57),(24,58),(25,33),(26,34),(27,35),(28,36),(29,31),(30,32),(61,69),(62,70),(63,71),(64,72),(65,67),(66,68)], [(1,15),(2,16),(3,17),(4,18),(5,13),(6,14),(25,33),(26,34),(27,35),(28,36),(29,31),(30,32),(43,51),(44,52),(45,53),(46,54),(47,49),(48,50),(61,69),(62,70),(63,71),(64,72),(65,67),(66,68)], [(1,11,27),(2,12,28),(3,7,29),(4,8,30),(5,9,25),(6,10,26),(13,39,33),(14,40,34),(15,41,35),(16,42,36),(17,37,31),(18,38,32),(19,72,52),(20,67,53),(21,68,54),(22,69,49),(23,70,50),(24,71,51),(43,58,63),(44,59,64),(45,60,65),(46,55,66),(47,56,61),(48,57,62)]])

96 conjugacy classes

class 1 2A···2G2H···2O3A3B3C···3H6A···6N6O···6AD6AE···6BT
order12···22···2333···36···66···66···6
size11···13···3114···41···13···34···4

96 irreducible representations

dim1111113333
type++++
imageC1C2C3C3C6C6A4C2xA4C3xA4C6xA4
kernelA4xC22xC6A4xC2xC6C23xA4C24xC6C22xA4C23xC6C22xC6C2xC6C23C22
# reps1762421417214

Matrix representation of A4xC22xC6 in GL5(F7)

10000
01000
00600
00060
00006
,
10000
06000
00600
00060
00006
,
50000
01000
00100
00010
00001
,
10000
01000
00100
00160
00106
,
10000
01000
00600
00060
00601
,
10000
01000
00150
00061
00060

G:=sub<GL(5,GF(7))| [1,0,0,0,0,0,1,0,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,6],[1,0,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,6],[5,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,6,0,0,0,0,0,6],[1,0,0,0,0,0,1,0,0,0,0,0,6,0,6,0,0,0,6,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,5,6,6,0,0,0,1,0] >;

A4xC22xC6 in GAP, Magma, Sage, TeX

A_4\times C_2^2\times C_6
% in TeX

G:=Group("A4xC2^2xC6");
// GroupNames label

G:=SmallGroup(288,1041);
// by ID

G=gap.SmallGroup(288,1041);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,2,782,1350]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^6=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<